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GPU ARCHITECTURES AND NEW 
PROGRAMMING MODEL FEATURES 
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HOW GPU ACCELERATION WORKS 
Application Code 

+ 

GPU CPU 

Compute-Intensive Functions 

Rest of Sequential 
CPU Code 
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HETEROGENEOUS ARCHITECTURES 
Memory hierarchy 

CPU 1 

System 
Memory 

GPU  
Memory 

GPU 0 GPU 1 GPU N 

CPU 0 
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GPU ARCHITECTURE 

GPU L2 

GPU DRAM 

SM-0 SM-1 SM-N 

PCI-E or NVLINK 
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GPU SM ARCHITECTURE 

 

 

Kepler SM 
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SM 
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15 SMs on Tesla K40 
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GPU SM ARCHITECTURE 

 

 

Maxwell SM 
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GPU SM ARCHITECTURE 

 

 

Pascal SM 
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56 SMs on Tesla P100 
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LOW LATENCY OF HIGH THROUGHPUT? 

CPU architecture must minimize latency within each thread 

GPU architecture hides latency with computation from other threads (warps) 

GPU Stream Multiprocessor – High Throughput Processor 

CPU core – Low Latency Processor Computation Thread/Warp 

Tn 

 

Processing 

Waiting for data 

Ready to be processed 

Context switch W1 
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T4 
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ACCELERATOR FUNDAMENTALS 

Must expose enough parallelism to saturate the GPU 

Accelerator threads are slower than CPU threads 

Accelerators have orders of magnitude more threads 

 t0 t1 t2 t3 

t4 t5 t6 t7 

t8 t9 t10 t11 

t12 t13 t14 t15 

t0 t0 t0 t0 

t1 t1 t1 t1 

t2 t2 t2 t2 

t3 t3 t3 t3 

Fine-grained parallelism is good Coarse-grained parallelism is bad 
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BEST PRACTICES 

Minimize data transfers between CPU and GPU, and between peer GPUs 

Optimize data locality for CPU and GPU 

HBM DDR HBM 

CPU GPU 0 GPU 1 
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BEST PRACTICES 

Minimize redundant accesses to L2 and DRAM 

 Store intermediate results in registers instead of DRAM 

 Use shared memory for data frequently used within SM 

 Use constant and read-only caches on SM  

Optimize data locality for SM 

L2 cache 

GPU SM 

GPU DRAM 
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BEST PRACTICES 

If addresses from a warp lie within the same cache line, that line is fetched once 

Best case: addresses lie in a single cache line (128B), 4x32B transactions 

 

 

Worst case: fully scattered access, 32 allocated cache lines, 32x32B transactions 

 

Coalesce memory requests 

128 256 

128 512 2048 



13  

BEST PRACTICES 
Avoid warp divergence 

if( threadIdx.x < 12 ) { 
 
 
} 
else { 
 
 
} 

Instructions are issued per warp 
 
Different execution paths within a warp 
are serialized 
 
Different warps can execute different 
code with no impact on performance 
 
Avoid branching on thread index 



14  

BEST PRACTICES 

Minimize thread block synchronization 

Expose instruction-level parallelism 

Use 64-bit and 128-bit vector loads 

Control occupancy with compiler hints 

Tile computation for better cache reuse 

Use mixed or reduced precision 

Other common optimizations 
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PROGRAMMING GPUS 
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3 WAYS TO PROGRAM GPUS 

Applications 

Libraries 

“Drop-in” 

Acceleration 

Programming 

Languages 

Maximum Performance 

and Flexibility 

Easy to use 

Portable code 

Compiler 

Directives 

OpenACC hands-on session today 7:30pm - 9:30pm 
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NVIDIA DEVELOPER LIBRARIES 

cuBLAS 

cuBLAS-XT 

NVBLAS 
cuFFT 

cuFFT-XT 

cuSPARSE 

cuSOLVER 

AMGX 

https://developer.nvidia.com/gpu-accelerated-libraries 

cuDNN 

cuRAND NPP THRUST NVENC NVBIO 

https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
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NVGRAPH 
Accelerated Graph Analytics 

Process graphs with up to 2.5 Billion edges on a 
single GPU (24GB M40) 

Accelerate a wide range of applications: 
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nvGRAPH: 4x Speedup 

48 Core Xeon E5

nvGRAPH on K40

PageRank on Wikipedia 84 M link dataset 

PageRank 
Single Source 

Shortest Path 

Single Source  

Widest Path 

Search Robotic Path Planning IP Routing 

Recommendation 

Engines 

Power Network 

Planning 
Chip Design / EDA 

Social Ad Placement 
Logistics & Supply 

Chain Planning 

Traffic sensitive 

routing 

https://developer.nvidia.com/nvgraph 

https://developer.nvidia.com/nvgraph
https://developer.nvidia.com/nvgraph
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UNIFIED MEMORY 
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UNIFIED MEMORY 
Dramatically Lower Developer Effort 

Performance 

Through 

Data Locality 

Migrate data to accessing processor 

Guarantee global coherence 

Still allows explicit hand tuning 

Simpler 

Programming & 

Memory Model 

Single allocation, single pointer,  

 accessible anywhere 

Eliminate need for explicit copy 

Greatly simplifies code porting 

Allocate Up To  
GPU Memory Size 

Kepler 

GPU 
CPU 

Unified Memory 

CUDA 6+ 
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SIMPLIFIED MEMORY MANAGEMENT CODE 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort(data, N, 1, compare); 
 
 
  use_data(data); 
 
  free(data); 
} 

void sortfile(FILE *fp, int N) { 
  char *data; 
  cudaMallocManaged(&data, N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  cudaFree(data); 
} 

CPU code GPU code with Unified Memory 

Single pointer for CPU and GPU 

 



22  

UNIFIED MEMORY ON PRE-PASCAL 

 

 

 

 

GPU always has address translation during the kernel execution 

Pages allocated before they are used – cannot oversubscribe GPU 

Pages migrate to GPU only on kernel launch – cannot migrate on-demand 

 

 

Code example explained 

cudaMallocManaged(&ptr, ...); 
 
*ptr = 1; 
 
qsort<<<...>>>(ptr); 

CPU page fault: data migrates to CPU  

Pages are populated in GPU memory 

Kernel launch: data migrates to GPU  
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UNIFIED MEMORY ON PRE-PASCAL 
Kernel launch triggers bulk page migrations 

GPU memory 
~0.3 TB/s 

System memory 
~0.1 TB/s 

PCI-E 

kernel 
launch page  

fault 

page  
fault 

cudaMallocManaged 
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CUDA 8: UNIFIED MEMORY 
Large datasets, simple programming, high performance 

Allocate Beyond  
GPU Memory Size 

Unified Memory 

Pascal 

GPU 
CPU 

CUDA 8 

Enable Large  

Data Models 

Oversubscribe GPU memory 

Allocate up to system memory size 

Tune  

Unified Memory 

Performance  

Usage hints via cudaMemAdvise API 

Explicit prefetching API  

Simpler  

Data Access 

CPU/GPU Data coherence 

Unified memory atomic operations 
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UNIFIED MEMORY ON PASCAL 

 

 

 

 

If GPU does not have a VA translation, it issues an interrupt to CPU 

Unified Memory driver could decide to map or migrate depending on heuristics 

Pages populated and data migrated on first touch 

 

Now supports GPU page faults 

cudaMallocManaged(&ptr, ...); 
 
*ptr = 1; 
 
qsort<<<...>>>(ptr); 

CPU page fault: data allocates on CPU  

       Empty, no pages anywhere (similar to malloc) 

GPU page fault: data migrates to GPU  
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UNIFIED MEMORY ON PASCAL 
True on-demand page migrations 

GPU memory 
~0.7 TB/s 

System memory 
~0.1 TB/s 

interconnect page  
fault 

page  
fault 

page  
fault 

page  
fault 

page  
fault 

map VA to  
system memory 

cudaMallocManaged 
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UNIFIED SYSTEM ALLOCATOR 
Any memory will be available for GPU* 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort(data, N, 1, compare); 
 
 
  use_data(data); 
 
  free(data); 
} 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char *)malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  free(data); 
} 

CPU code GPU code with Unified Memory 

*on supported operating systems 
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SUMMIT 
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SUMMIT 

Vendor: IBM (Prime) / NVIDIA™ / Mellanox Technologies® 

Approximately 3400 nodes, each with: 

 IBM POWER9 CPUs + NVIDIA Volta GPUs 

 CPUs and GPUs connected with high speed NVLink  

 Large coherent memory: over 512 GB (HBM + DDR4) 

 Over 40 TF peak performance  

Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect  

 

2017 OLCF Leadership System 
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SUMMIT 
How does Summit compare to Titan 
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SUMMIT 

Fewer but much more powerful nodes 

 1/6th  the number of nodes, but 25x more powerful 

Must exploit more node-level parallelism 

 Multiple CPUs and GPU to keep busy 

 Likely requires OpenMP or OpenACC programming model 

Very large memory 

 Summit has ~15x more memory per node than Titan 

Interconnect is only ~3x the bandwidth of Titan 

 Need to exploit data locality within nodes to minimize message passing traffic 

 

Titan & Summit Application Differences 
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RESOURCES 

CUDA resource center: http://docs.nvidia.com/cuda 

GTC on-demand: http://on-demand-gtc.gputechconf.com 

Parallel Forall blog: http://devblogs.nvidia.com/parallelforall 

Self-paced labs: http://nvidia.qwiklab.com 

 

 

Learn more about GPUs 

http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://devblogs.nvidia.com/parallelforall
http://devblogs.nvidia.com/parallelforall
http://devblogs.nvidia.com/parallelforall
http://nvidia.qwiklab.com/
http://nvidia.qwiklab.com/
http://nvidia.qwiklab.com/
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COOPERATIVE GROUPS 
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COOPERATIVE GROUPS 
A Programming Model for Coordinating Groups of Threads 

 

Support clean composition across software boundaries (e.g. Libraries) 

 

Optimize for hardware fast-path using safe, flexible synchronization 

 

A programming model that can scale from Kepler to future platforms 
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COOPERATIVE GROUPS SUMMARY 
Flexible, Explicit Synchronization 

Thread groups are explicit objects in the program 

 
 

Collectives, such as barriers, operate on thread groups 

 

New groups are constructed by partitioning existing groups 

thread_group group = this_thread_block(); 

sync(group); 

thread_group tiled_partition(thread_group base, int size); 
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MOTIVATING EXAMPLE 
Optimizing for Warp Size 

__device__  
int warp_reduce(int val) {  
  extern __shared__ int smem[]; 
  const int tid = threadIdx.x; 
 
  #pragma unroll 
  for (int i = warpSize/2; i > 0; i /= 2) { 
    smem[tid] = val;      __syncthreads(); 
    val += smem[tid ^ i]; __syncthreads(); 
  } 
  return val;   
} 

__syncthreads() is too expensive 

when sharing is only within warps 
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MOTIVATING EXAMPLE 
Implicit Warp-Synchronous Programming is Tempting… 

__device__  
int warp_reduce(int val) {  
  extern __shared__ int smem[]; 
  const int tid = threadIdx.x; 
 
  #pragma unroll 
  for (int i = warpSize/2; i > 0; i /= 2) { 
    smem[tid] = val;       
    val += smem[tid ^ i];  
  } 
  return val;   
} 

Barriers separating steps removed.  

UNSAFE! 
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MOTIVATING EXAMPLE 
Safe, Explicit Programming for Performance 

Approximately equal performance to unsafe warp programming 

__device__  
int warp_reduce(int val) {  
  extern __shared__ int smem[]; 
  const int tid = threadIdx.x; 
 
  #pragma unroll 
  for (int i = warpSize/2; i > 0; i /= 2) { 
    smem[tid] = val;       sync(this_warp()); 
    val += smem[tid ^ i];  sync(this_warp()); 
  } 
  return val;   
} 

Safe and Fast! 
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PASCAL: MULTI-BLOCK COOPERATIVE GROUPS 

Provide a new launch mechanism for multi-block groups 

Cooperative Groups collective operations like sync(group) 
work across all threads in the group 

Save bandwidth and latency compared to multi-kernel 
approach required on Kepler GPUs 

Normal __syncthreads() 

Multi-block Sync 


